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Abstract-An implicit finite difference scheme is developed for solving the problem of faminar flow of 
gases in heated (or cooled) circular tubes with an unheated entrance section, under conditions where 
large variations of gas properties occur. The solution is based on the boundary-layer equations, the 
validity of which for the present problem has been verified from the numerical solutions. 

Numerical examples are worked out for air including (i) pure forced convection with different 
rates of uniform heating; (ii) pure forced convection with uniform wall temperature with heating as 
well as cooling of the gas; and (iii) superimposed forced and natural convection with uniform heat 
flux. For pure forced convection approximate expressions for the local Nusselt number and the 

friction factor are given. 

NOMENCLATURE 

Lower case letters 
r, radial coordinate; 
r+ 3 non-dimensional radial coordinate, 

exponent in power law for specific heat; 
exponent in power law for viscosity; 
exponent in power law for thermal 
conductivity; 
specific heat at constant pressure; 
non-dimensional specific heat, c,/c,,o; 
specific heat at constant volume; 
friction factor, ~~/[~(pzf)~u~]; 
acceleration of gravity; 
thermal conductivity; 
non-dimensional thermal conductivity, 
klko ; 
designation of arbitrary mesh point in 
the axial direction; 
designation of arbitrary mesh point in 
the radial direction; 
absolute pressure; 
non-dimensional pressure, ~/PO; 
heat flux at tube wall; 
non-dimensional heat flux, 

ro, 
4 
u+, 
UOT 

V, 
vf , 

X, 
x+, 

rlro; 

tube radius; 
axial velocity; 
non-dimensional axial velocity, z&o; 
mean velocity at x = 0; 
radial velocity; 
non-dimensional radial velocity, 

(~/~O)~~~,O X+,0; 
axial coordinate; 
non-dimensional axial coordinate, 

(x/ro)/(NRe,o NPr,O). 

Capital letters 
D, tube diameter; 
H, enthalpy ; 
H+, non-dimensional enthalpy, 

(H - ~o)kG?,o 7b): 
MO, Mach number, u~/(+Iii)~/~; 
N, designation of mesh points on the 

wall ; 
NE, parameter in energy equation, _\ _ *n 

? On Ieave from The Technical University of Denmark. 
Present address : Department of Mechanical Engineering, 
The Technical University of Denmark, Copenhagen. 

fYo--1~~~; 
NG, parameter in momentum equation, 

NGY*,O N~r,o/N~e,o; 

1281 



1282 P. M. WORSQE-SCHMIDT and G. LEPPERT 

NGr, Grashof number, 

8gp2(Tw - Tm>rZIVmr;2>; 
N GT*, modified Grashof number, 8gpsr$‘~e: 
NW%, Nusselt number, 2q~~~/~~(T~ - Tm)]; 
Npe, P&let number, Nne NP,.; 
Npe,%, P&let number, based on axial distance, 

N Re,x NP~; 

Npr, Prandtl number, ,uc&; 
Nne, Reynolds number, 2(~~)~~~~~; 
NR~,%, Reynolds number, based on axial 

distance, 2~~~~x1~~; 

p, pressure defect, 

(IJ --. PO>/(PO~~) = (1 - P+)l(YoW; 
K gas constant; 

T, absolute temperature. 

Greek symbols 

Y? ratio of specific heats, &cv; 
6, central difference operator; 
AX, Ar step-widths in axial and radial direc- 

tion respectively; 
Ax+. Ar+, non-dimensional step-widths; 

8, non-dimensional temperature, T/To; 
A viscosity; 

p+, non-dimensional viscosity, I_L/~o; 

P, density; 

P+, non-dimensional density, P/PO; 
CT, weighting factor in difference quotients; 

7‘8th wall shear stress, - ; 

7w+, non-dimensional wall shear stress, 

#, arbitrary dependent variable. 

Subscripts 

m, mean value (with respect to cross 
section); evaluated at the mixed mean 
temperature; in difference equations, 
referring to x = mAx; 

n, referring to r = nAr; 
N, referring to mesh points on the wall; 
0, for gas properties, reference value at 

x =o; for non-dimensional para- 
meters, evaluated at x = 0; 

x, Reynolds and P&let numbers based on 
axial distance from x = 0; 

IV, evaluated at the tube wall. 

INTRODUCTION 

1~ RECENT YEARS high temperature heat transfer 
to gases has attracted considerable interest, 
notably in connection with cooling of nuclear 
reactors. Due to the variation of the physical 
properties of the gas, over the cross-section of 
the duct as well as axially, that occurs at high 
heating rates, the classical solutions which are 
based on the assumption of constant fluid pro- 
perties may lead to serious errors in the pre- 
dicted performance. 

For gases both the density and the transport 
coefficients are, at least approximately, propor- 
tional to the absolute temperature of the gas 
raised to some power. The ratio of the absolute 
temperature of the wall and of the gas (e.g. the 
mixed mean, or bulk, temperature), respectively, 
is therefore a good indication of whether the 
property variation is significant or not. As long 
as this ratio is less than approximately 1.2 
constant-properties solutions will give reasonably 
accurate results for the heat transfer. 

The first attempt to solve the problem of 
laminar flow of gases with appreciable (radial) 
variation of both thermodynamic and transport 
properties was made by Deissler [l] who based 
his solution, for uniform heat flux at the wall, 
on the concept of fully developed velocity and 
temperature profiles. Later a similar analysis has 
been carried out by Sze [2]. Davenport and 
Leppert [3] assumed that sufficiently far from 
the entrance quasi-developed velocity and 
temperature profiles existed and included in their 
analysis the effect of a radial velocity component. 
Koppel and Smith [4] obtained an approximate 
finite-difference solution for laminar ffow of 
carbon dioxide near its critical point. 

Experimental heat-transfer data for both 
heating and cooling of air with wall-to-bulk 
temperature ratios between O-5 and 2 have been 
presented by Kays and Nicoll [5]. Davenport 
and Leppert [3] measured both heat transfer and 
pressure drop for flow of nitrogen and helium 
with wall-to-bulk temperature ratios up to 2.2. 
Heat-transfer and friction data have also been 
reported by Dalle Donne and Bowditch [6, 71 for 
flow of air and helium with maximum wall-to- 
bulk temperature ratios of a little over two. 

The trend in the experimental results is con- 
sistently that up to the highest temperature ratio 
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attained so far, Nusseft numbers evaluated at the 
mixed mean temperature deviate fess from the 
corresponding values for constant properties 
than predicted by the analyses of references 1 
and 2. The deviations are, in fact, almost com- 
pletely masked by the, necessarily rather large, 
experimental uncertainty. The friction factors, 
however, show a considerable increase with 
increasing wall-to-bulk temperature ratio. This 
effect is significantly underestimated by Deissler’s 
and Sze’s analyses. The analysis by Davenport 
and Leppert is in better agreement with the 
experimental results but their predictions contain 
an element of arbitrariness because both the 
magnitude and the distribution of the radial 
velocities are postulated rather than found by 
solution of the equations of motion. 

The reason for the discrepancies between the 
analyses and the experimental data-with the 
exception of the study by Koppel and Smith 
which, however, is of limited interest in the 
present context due to the peculiar behavior of 
both the thermodynamic and the transport 
properties in the vicinity of the critical point- 
clearly is that they are based on oversimplifying 
assumptions. On the other hand, if analytical 
or semi-analytical solutions are to be obtained 
rather gross simpfications are necessary due to 
the nonlinearity of the governing equations and 
the strong coupling between them. Therefore, if 
more accurate results are desired resort must be 
made to finite-difference methods. In this way 
the basic equations may be integrated with a 
minimum of simplifying assumptions and, 
furthermore, the effect of the approximations 
made may be estimated from the numerical 
solutions. 

In the present study an implicit finite-differ- 
ence scheme is developed for numerical integra- 
tion of the basic (boundary-layer) equations. 
For the case of fully developed flow at the start 
of the heated section examples are computed 
for uniform heat flux at the wall and for uniform 
wall temperature. 

BASIC EQUATIONS 

In the formulation of the present problem 
all the usual boundary-layer approximations 
were made. This is common practice for incom- 
pressible flow even though, for flow in long ducts, 

the lack of similarity between velocity and 
temperature profiles, respectively, at different 
axial locations makes it impossible to provide 
axially independent estimates of the order of 
magnitude of the individual terms in the com- 
plete equations. The agreement between pre- 
dictions based on solutions of the boundary-layer 
equations and experimental results has, so far, 
provided the justification for applying the 
approximations. However, recently a solution 
of the complete equations for incompressible 
flow in the inlet region of a plane duct has been 
presented by Wang and Longweff [8]. Com- 
parison of their results with the previous 
analytical solution by Schfichting [9], improved 
by Collins and Schowafter [IO, 1 I], and with the 
finite-difference solution by Bodoia and Osterfe 
[12] indicates that with the usual restriction to 
Reynolds numbers, based on the distance from 
the inlet, above a certain value the boundary- 
layer approximations are indeed valid for flow 
in ducts. In order to obtain the same degree of 
approximation as for external flow the minimum 
Reynolds number must, however, be higher than 
the usually accepted value of some two hundred. 

As for the energy equation the crucial assump- 
tion is that the molecular contribution to axial 
thermal energy transfer may be neglected. For 
flow with constant properties the validity of this 
assumption, for P&let numbers above 100-200, 
has been confirmed by the eigenvalue solution 
by Singh [13] and the approximate solutions, for 
Prandtf numbers in the liquid metals range, by 
Schneider [14] and Petukhov and Tsvetkov [IS]. 
With the close analogy that exists between 
momentum and thermal energy transfer for 
fluids with Prandtl numbers close to unity this 
result also indicates that for flow of gases the 
molecular contribution to axial momentum 
transfer may be neglected. 

In the present case we have the additional 
complication of the property variation. It is 
hardly conceivable that the perturbation caused 
by the fatter should change the order of magni- 
tude of otherwise second-order terms in the 
equations. However, a definite answer to this 
question can be obtained only a posteriori by 
estimating, from the numerical solutions, the 
magnitude of the neglected terms. 

If we restrict our considerations to axially 
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symmetric flows-which implies that when 
natural convection effects are significant only 
flow in vertical tubes will be considered-and a 
cylindrical coordinate system is chosen with the 
x-axis positive upwards the boundary-layer 
equations become 

In addition to these equations we need 

(1) 

(2) 

(3) 

equations of state to give the necessary relations 
between the thermodynamic properties and 
expressions for the temperature dependence of 
the transport coefficients (assuming that the 
latter are independent of pressure). The assump- 
tion will be made that the gas obeys the perfect 
gas law 

p = pRT (4) 

This holds to a good approximation as Iong as 
the gas is not too dense. 

With the enthalpy at s = 0 as reference value 
we have 

H-Ho=TcPdT (5) 
TO 

For the monatomic gases the specific heat and 
the Prandtl number do not vary significantly 
with temperature. However, for diatomic and 
polyatomic gases the variation of the specific 
heat, although less than that of the transport 
coefficients, is not negligible. For all three pro- 
perties the dependence will be taken as power 
laws which give reasonably good approximations 
to the actual behavior, 

c&,,o = (T’Toja 

rui~o = (T/To~~ 

kiko = (TITo)~ 

(6) 

(7) 

(8) 

At the wall the no-slip condition, the imper- 
meability of the wall, and the imposed thermal 
condition give the following boundary con- 
ditions, 

U =o; 2, =o; 7 

H = H(T,) for specified wall 1 
temperature; k (9) 

8H 
- = & qi for specified heat flux. 

I 

a. ,i J 

At the centerline the following conditions arise 
from the symmetry of the problem, 

au 8H 
ar 
~~ =o; r~z=o; _ =o (10) 

For x = 0 we have the starting conditions 

u = 2~0 [I - (r/r~)~]; u = 0; H = Ho (11) 

Strictly, the starting profile is parabolic only 
if expansion work and viscous dissipation are 
negligible, i.e. if the Mach number at the inlet 
is sufficiently small. For cases with appreciable 
heating this condition is already imposed 
because the Mach number at the exit must be 
below unity. 

When non-dimensional variables are sub- 
stituted in the foregoing equations one obtains, 

1 NGr”,O NPr.0 dP 
I 

2 
NRe.0 

p++ d-j WI 
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e 

Hf = 
s 

cf d9 = i:, (@-+a 

1 

P + =pf/tl 

c; =: @a 

f*+ = @b 

k+ =3 $c 

The boundary conditions are 

Y+ = I; x+ > 0: 

&- T= 0; rI+ =o 

- 1) (15) 

(16) 

(17) 

(18) 

(19) 

i3Hf 
H-+ = H+(L%,), or ari = j$ @ 

J 
rf =o; x+>o: 

au+ aHT+ -. = 0, p+ Tzz 0; __ =1 0 
at-+ ) at-+ (21) 

x+=0; O,(rf<l: 

U+ = 2(1 - rf’); z+ = 0; Hf = 0 (22) 

Heat-transfer results are expressed in terms of 
the conventional Nusselt number, based on the 
difference between the wall temperature and the 
mixed mean temperature of the gas. As a refer- 
ence temperature for evaluation of the physical 
properties in the Nusselt number and the 
Reynolds number the mixed mean temperature 
was chosen. In terms of the non-dimensional 
variables the Nusselt number becomes 

N 7, 
a+ 

h”,m = k+,(& - 0,) (23) 

where, for specified wall temperature, the wall 
heat flux is 

7+=1 
(24) 

The mixed mean temperature is taken as the 
temperature corresponding to the mixed mean 
enthalpy, 

1 
j p+ u+ H+ r+ drf 

H;t,=’ 1 
f p+ uf rf drf 

=Zj p+ti+H+r-+dr+ (25) 
0 

The friction factor is defined as? 

or, in terms of non-dimensional variables, 

f NRe,m = 2r2,’ 
p$ i uf r+ drf 

0 

where 

I.+=1 

With the governing equations written in non- 
dimensional form we may identify the indepen- 
dent parameters in the problem. For reference 
purposes it will be convenient to divide them 
into two groups, “operational” and “property” 
parameters. Of operational parameters we find 
(Y -- 1)M2, NG,.*/NR~ (or Nm* NP~NR~), and 
either qf or 8,; the property parameters are the 
Prandtl number and the three exponents of the 
power laws. The latter which appear as indepen- 
dent in a mathematical sense are of course not 
physically independent; they simply specify a 
particular gas and a certain temperature range 
for which the solutions will be valid. Neither are 
the operational parameters completely indepen- 
dent. The natural convection and the dissipation 
parameters are coupled through, e.g. the Rey- 
nolds number and the diameter of the tube 
which, although they do not appear explicitly, 
impose certain restrictions on the relative 
magnitude of the two parameters. For a perfect 
gas with pressure-independent viscosity the 
connection between these parameters is particu- 
larly simple since, for fixed gas temperature, 
M CC Nl&pD) and NG~* CC p2D3. These rela- 
tions are shown on Fig. 1 for air at 80°F. 

For sufficiently small values of NG~~/N~~ 
(below 20, say) natural convection effects will 

t There are, in fact, two other ways of defining the 
friction factor, namely, 

f= 7w 
HP4?2/Pm' 

and f = -&:ik; 

The former of the two definitions is the one usually 
employed in the reduction of experimental pressure drop 
data where the flow is treated as ane-dimensional. It 
can be shown that all three de~nitio~ are equivalent for 
perfect gases with constant specific heats if the somewhat 
arbitrary definition pm = p(8,) is introduced. 
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p atm 

FIG. i. Relation between the Mach number and the 
natural convection parameter for flow of air in circular 

tubes at 80°F. 

be negligible. On the other hand, when the Mach 
number is less than approximately 0-I both 
expansion work and viscous dissipation are 
insignificant. From Fig. 1 it is seen that the two 
effects are mutually exclusive and that, in a 
limited range, both may be neglected. 

If a comparison is made with constant- 
properties flow (including buoyancy effects) one 
finds that our operational parameters have their 
exact counterparts, with the exception of the 
parameter related to the thermal boundary 
condition. To NG~*/NR~ corresponds NG~INR~, 
and to (y - 1)M” corresponds the Eckert 
number, ui/(cP AT). The increased complexity 
due to the variation of the properties shows up 
in the property parameters and in the parameter 
related to the thermal boundary condition. The 
latter indicates the nonlinearity of the energy 
equation which means that solutions cannot be 
superimposed. 

FINITE-DEFERENCE SCHEME 

For the numerical integration a two-level 
scheme with central differences in the radial 
direction was chosen. The designation of mesh 

points is shown on Fig. 2. Introducing a central 
difference operator 

6 m,w = (6,,,+1 - +?n,n-1 

s;, =i (bm,n+1 - 2&n,lk + &&w-l 

and a weighting parameter CT, 0 < u < 1, we 
can express the difference quotients by Taylor 

0 1 m-1 m m+i 

-X 

FIG. 2. Designation of mesh points. 

series expansions about the point [(in + u) AX, 
iz Ar], 

- & (1 - 2~) zt Ax + 0 (As2) 

a+ oS#m+l,n + (1 - G) a#, n -.--!- 
ar -- 2Ar 

-t 0 (AS) + 0 (A@) 

a26 ~@&n-i-i& -!- (1 - 0) S2&n,n --=A. 
l3r2 AG 

+ 0 (Ax“) + 0 (A+) 

(29) 

(30) 

(31) 

When the three equations (12)-(14) are written 
in expanded form, the power laws (17)-(19) are 
introduced, and the derivatives are replaced by 
difference quotients according to (29)-(31), a 
set of algebraic equations is obtained. From these 
equations, supplemented with the boundary 
conditions (20) and (21) and with the thermo- 
dynamic relations (15) and (I@, the unknown 
values of u+, v+, H+, and P on the (m + 1)th 
line may be solved for when the corresponding 
values on the preceding line are known. Due to 
the parabolic nature of the boundary-layer 
equations (as contrasted to the elliptic nature 
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of the complete equations) the entire flow and 
enthalpy fields may thus be found by stepping 
ahead in the axial direction, starting at x+ = 0 
with the initial values (22). 

When u is zero the finite-difference scheme is 
explicit, so called because the unknowns in the 
difference equations may be solved for directly 
at each mesh point. For all other values of G we 
have an implicit scheme and the unknowns must 
be found by solving the set of 3 x N simul- 
taneous equations that results when the differ- 
ence equations are written for all interior points 
on the (m + I)th line. Preliminary considerations 
showed that for an explicit scheme to be stable 
the axial step-width could at most be of the 
order of 1 O-4. Since solutions up to .Y+ = O-2-0.5 
were desired the number of steps in the axial 
direction would become of the order of several 
thousands, a nearly prohibitive magnitude. It 
was, therefore, decided to use an implicit method 
for which the axial step-width could be selected 
solely from convergence considerations. 

For simple linear equations of the parabolic 
type as, e.g. the one-dimensional diffusion 
equation, it is known that a two-level scheme 
with (T > $ is unconditionally stable. Fliigge-Lotz 
and Blottner [16] have shown that this is also 
true for the equations describing external com- 
pressible boundary-layer flow. A scheme with 
u = & (the Crank-Nicolson scheme) is particu- 
larly attractive because, as may be seen from 
equation (29), for this value of u the truncation 
error is O(Ax2) + 0(Ar2) whereas for all other 
values of u the error is O(Ax) + O(Ar2). However, 
for the present case the Crank-Nicolson scheme 
turned out not to be stable. The same result was 
found by Abbott in a study of axially symmetric 
incompressible flows in a tube [17].t In order to 
keep the truncation error as small as possible 
the value of u should be chosen as close to one 

t The explanation proposed in reference 17 for the lack 
of stability of the Crank-Nicolson scheme must, however, 
be rejected. The instability does not, as suggested by 
Abbott, originate in the solution of the momentum 
equation per se. Both the result of an approximate 
stability analysis for flow in tubes [18] and some observa- 
tions by Fliigge-Lotz and Blottner [lb] strongly indicate 
that the instability arises through the alternate propaga- 
tion of errors by the momentum equation and the 
continuity equation, and that the amplificaticn of errors 
mainly occurs in the solution of the latter. 

half as compatible with the stability requirement, 
The difference equations and the corresponding 
computer program was therefore formulated 
such that an arbitrary value could be assigned to 
0. Preliminary computations indicated that a 
reasonable compromise between the stability 
requirement on one side and the rate of con- 
vergence of the solutions on the other could be 
obtained with u = 2. 

In principle both the nonlinearity of the 
differential equations and the coupling between 
them carry over to the difference equations. 
However, one of the main advantages of finite- 
difference methods is that the difference equations 
may be linearized and uncoupled locally. The 
adverse effect of such linearization and of the 
uncoupling may, furthermore, be reduced ad 
libitum by iteration at each step. 

In the momentum equation and in the energy 
equation the radial velocity appears only in the 
second convective term. If this term is linearized 
by introduction of the known value of p+ t’f from 
the preceding step, the continuity equation 
becomes completely uncoupled from the two 
former equations, and the solution of it may be 
deferred until the axial velocities and the 
enthalpies have been found. Because the flow 
is confined one must, however, introduce in the 
solution of the momentum equation the con- 
straint that the total mass flow be conserved. 
This is done by including in the solution of the 
N difference equations derived from the momen- 
tum equation the integrated continuity equation. 
Since adding this equation does not in itself 
introduce any new unknown the pressure defect 
is included as an unknown in order to prevent 
overdetermination of the system of equations.: 

: We are here in the paradoxical situation that we solve 
for threz unknowns, u, u, and P (leaving, for the moment, 
the property variation out of the question), by means 
of only two independent equations. For external bound- 
ary layers this problem does not arise because the pres- 
sure is determined by the external (potential) flow. 
Wendel and Whitaker [19] comment on this paradox in 
contlection with the finite-difference solution of the 
development of incompressible flow in a plane duct by 
Bodoia and Osterle [12]. The explanation must be sought 
in the fact that for confined flows the pressure variation 
is determined by the viscous flow field itself, but, since 
we have assumed that the pressure is uniform over the 

Continued on next page 
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The linearization of the (expanded) momentum 
and energy equations further implies that known 
values are introduced for p + u+ as well as forp+ 
and k-+/c,+. In the momentum equation only the 
term containing the derivative of the viscosity 
may be linearized in such a way as to furnish 
a direct coupling to the energy equation. Since 
the equally strong couplings through the vis- 
cosity itself and through the density had to be 
sacrificed anyway, it was decided to solve the 
two equations independently and to use iteration. 

The sequence in which the computations were 
carried out at each axial step is, briefly stated, as 
follows: First the difference equations for H+ 
were solved. Then the new value of P was 
determined and the difference equations for u+ 
were solved. Finally the new values of p+ v+ were 
found from the continuity equation. Single 
iteration was used except where the number of 
mesh points in the radial direction was changed. 
Since this change seemed to introduce some 
instability three iterations were used at such 
points. At each axial step the computations 
started with known values from the preceding 
step in the linearized terms. However, as soon 
as new values became available weighted 
averages 

$ m+u,n = "c$m+l,7~ + (1 - 4#m,n 

and the corresponding difference quotients were 
substituted into the linearized terms. 

The fact that the governing equations (12), 
(13), and (14) express the momentum balance 
and the conservation of mass and thermal 
energy, respectively, was utilized to keep a 
current check on the convergence ofthe numerical 
soIutions. Using at x+ = 0 the initial conditions 
(22) and at an arbitrary location average values 
obtained by integration over the cross-section 
one may, for each of the conserved quantities, 
make a control volume balance. In mathe- 
matical formulation this procedure amounts 
to a double integration, first with respect to r+ 
(after multiplication by 2~‘“) and then with 

----- 
cross-section, it can depend directly on the axial velo- 
cities only. The pressure is, therefore, not a true variable 
in the same sense as the velocity components are, and the 
necessary, third, relation may be found from either of 
the two equations simply by eliminating the radial 
velocity component. 

respect to x+. A comparison of the values 
obtained from the right-hand side and from the 
left-hand side, respectively, will then show to 
which degree the solution is consistent with the 
basic equations. 

The double integration yields the following 
three equations : 

2lp+u+r+dr+- 1 =O 

1 5+ 

2 
s 

p+ u+ H+ r+ dr+ = 4 
s 

qf dx+ 

0 0 

Xf 1 

- 2NE -$; 
is s 

u+ r + dr+ d.r+ 

- 2 N&,0? /PI (g)’ r+ dr+ dx+] (34) 

0 0 

In the numerical computations the integra- 
tions with respect to X+ were performed with the 
trapezoidal formula which has a truncation 
error of O(Ax3), i.e. two orders of magnitude 
smaller than the truncation error of the finite- 
difference scheme. The radial integrations were 
carried out by means of Simpson’s rule, giving 
an error of O(Ar5). 

Satisfactory convergence of the solutions in 
the downstream region (x+ > 0.05) could be 
obtained with twenty mesh points in the radial 
direction and an axial step-width of Ax+ = 10-s. 
Due to the discontinuity in the thermal boundary 
condition at X+ = 0 the discrepancies, particu- 
larly in the thermal energy balance, tended to 
be rather large in the first few steps. The com- 
putations were therefore started with N = 80 
and Ax+ = 1.25 x 10-4. At three preassigned 
locations the axial step-width was doubled and 
at the first two the number of mesh points in 
the radial direction were halved. For the same 
reason the solutions are in the following con- 
sidered only for X+ 2 10e3. 

The problem was coded in ALGOL and 
solved on the CDC l&MA computer of A/S 



HEAT TRANSFER AND FRICTIOI ?T FOR LAMLNAR FLOW OF GAS 1289 

R~gnecentralen (The Danish Computation 
Center). The computation time for integration 
up to x+ = O-5 was about 10 min; this corre- 
sponds to approximately one second per axial 
step with twenty mesh points, including one 
iteration. 

NUMERICAL RESULTS 

In the numerical examples the emphasis has 
been placed on solutions for uniform heat flux 
at the wall. The inlet Mach numbers were chosen 
such that expansion work and viscous dissipa- 
tion were almost negligibIe throughout the tube. 
The corresponding terms are, however, included 
in the computer program, and it is the intention 
in the future to extend the solutions to cases with 
high Mach numbers in the downstream region. 
All examples were computed with properties 
corresponding to those of air, 

Npr.0 = 0.72; yo = 1.40; a = O-12; 

b = 067: c = O-71. 

Local wall parameters from a series of five 
solutions with increasing heat flux at the wall 
are given in Table 1. The Mach number at the 
inlet was in all cases 0.01 and the natural con- 
vection parameter, N&*,0/N&,0, Was Unity, a 
value for which natural convection effects are 
negligible. For the two lowest heat fluxes the 
integration was continued until x+ = 0.5 where, 
for flow with constant fluid properties, the 
temperature profile would differ insignificantly 
from the fully developed profile. At higher heat 
fluxes the computations were not carried so far 
because of the rapid increase of the gas tempera- 
ture; with power laws for the transport coefIi- 
cients and the specific heat it would be unrealistic 
to let B exceed values of some 6-8. 

The local Nusselt numbers are plotted on 
Fig. 3. They show surprisingly small deviations 
from the solution for constant fluid properties; 
even at the highest heat flux, resulting in a 
maximum wall-to-bulk temperature ratio of 
more than three, the deviations are at most 
some twenty per cent. This result is, however, 
consistent with the fact that in experimental 
investigations with heat fluxes corresponding 
to values of q+ up to 10, deviations from the 

Table 1. Wui/ puru~eters for pure forced convection witk 
Uniform heat fhx (Nor ,a/NR~,O = 1; .kf0 = lo-“) 

_______- ~-~_-- .-DZ 

q+ = 0.5 
~_._.._ _.~..___ 

x+ NNU,VZ & fNRe,m 72 TVL 
0.001 16.36 1.063 16.92 1,061 
0.002 12.86 1.081 11.11 1 .Oll 
0.005 9.48 1.115 17.58 1.104 
0.01 7.62 l-149 17.94 1.127 
0.02 6.24 1.196 18.30 1.150 

. 0.05 4.99 1.286 18.58 1.170 
0.1 4.48 1.394 18.43 I.164 
0.2 4.32 1.374 17.89 I.132 
0.5 434 2.098 17-02 I.073 

qf = 2 
~..._~_ 

x’ N NU,?U 8, fh_RE,V8 TtLJL 
0.001 16.73 1.246 19.65 1.236 
0.002 13.21 1.315 20.60 1.295 
0,005 9.77 1.438 22.07 1.383 
0.01 7.84 1.563 23.16 1.448 
0.02 6.34 1.727 23.88 1.491 
0.05 4.92 2.034 23.32 1.462 
0.1 4.35 2.383 21.31 1.347 
0.2 4.27 2.988 18.80 1.196 
0.5 4.34 4.88 16.92 1.067 

~~-.-. - _- 
(I+ = 5 

n+ NX,,, 8, .fN~e,m T,ITm 

OaOl 17.36 1.588 24.98 1557 
0.002 13.71 1.746 27.12 1.680 
O%l5 10.16 2.020 29.97 1.837 
0.01 8a4 2.292 31.4 1,914 
0.02 6.33 2641 31.1 I.898 
0.05 4.12 3.21 27.03 1.673 
0.1 4.20 3.99 22.09 1.395 
0.2 4.27 5.36 18.40 1.174 

- ________~__._ 
q+ = 10 

- _ 
x+ NXX,tTX &J fN&,, TldT, 
O+OL 18-19 2.109 33.5 2.029 
0‘002 14-41 2,394 37.0 2~216 
0,005 10.48 2.876 40.6 2.399 
0.01 8.09 3.35 40.7 2.402 
0.02 6.15 3.94 37.2 2.221 
0.05 4.47 4.98 28.39 1,742 
0.1 4.14 6.21 21.40 1.359 

___. ~- 
q+ = 20 

_- -.- 
x+ NNU,~ 0 fNne,m lxG,, 

om1 19.31 3.;: 49.1 2,813 
0.002 1515 3.54 53.7 3.04 
0.005 10.64 4.36 55.2 3.12 
0.01 7.88 5.15 50.6 2.896 
0.02 5.77 6.12 41.5 2,435 
0.05 4.21 7.80 27.81 I.703 

_____--__~ ____ ._. ..__ ~.-~-- --- 
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FIG. 3. Local Nusselt numbers for pure forced convection with uniform heat flux. 

constant-properties solution could hardly be 
detected. 

Surprising also is the fact that for small values 
of x+ the Nusselt number increases with increas- 
ing heat flux, contrary to the predictions of 
previous analyses. The explanation of this 
unexpected behavior lies in the perturbation of 
the flow field. On Figs. 4 and 5 the development 
of the axial and radial velocities is shown for 
q+ = 5 and qf = 20. One notes that the effect 
of the property variation on the axial velocity 
profile is the opposite of what has been common 
belief: instead of a sharpening of the peak one 
finds a flattening of the profile. In the light of 
the information contained in the figures both the 
relatively small magnitude and the direction of 
the deviations of the Nusselt numbers from the 
constant-properties solution become under- 
standable. We are clearly dealing with several, 
partly opposing, effects: the increase of the 
thermal conductivity near the wall increases the 
radial conduction; the larger velocity gradients 
at the wall tend to increase the axial convection 
but the decrease of the density acts in the opposite 
direction; finally we have the radial convection 
which in the beginning adds to the heat transfer 
from the wall but later is reversed. 

It is interesting to note that “overshoot” 
profiles may occur at high heating rates since, for 

flow in ducts, such profiles are usually associated 
with superimposed natural convection. That in 
this case the overshoot did not arise from 
buoyancy effects was checked by repeating the 
computations for qf = 20 with the sign of the 
gravitational term reversed (corresponding to 
downward flow); this changed the axial velocities 
by less than O-1 per cent. It should be noted that 
velocity profiles with the same trends as the 
present-even with overshoot-were predicted 
by the approximate analysis by Davenport and 
Leppert [3]. 

The development of the temperature profiles 
is shown on Fig. 6. One sees that there is a 
qualitative agreement between the profile calcu- 
lated by Deissler [l] and the profile from the 
present solution for q+ = 20 at x+ = 0.05.7 

On Fig. 7 local friction factors are plotted 
together with the wall-to-bulk temperature ratio. 
In contrast to the Nusselt numbers the friction 
factors show a considerable increase over the 
value for isothermal flow. One also notes that 
the axial variation of fNRe,m exhibits a striking 
similarity to the variation of the temperature 
ratio. 

t At xf = 0.0.5 the wall-to-bulk temperature ratio 
happens to be 1.70, the same value for which Deissler 
shows a temperature profile. 
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FIG. 4a. Axial velocity profiles for pure forced convection 
with uniform heat flux; qf = 5. 
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FIG. 4b. Radial velocity profiles for pure forced concec- 
tion with uniform heat flux: a+ = 5. 
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r+ 
FIG. 5a. Axial velocity profiles for pure forced convection 

with uniform heat flux; q+ = 20, 

An important general conclusion that may be 
drawn from Figs. 3 and 7 is the fact that- 
irrespective of the heating rate-significant 
variations of the fluid properties and, hence, 
effects of the latter on heat transfer and wall 
friction, are limited to the usual thermal entrance 
region. In fact, the higher the flux is, the more 
rapidly both the Nusselt number and the friction 
factor approach the asymptotic values for 
constant-properties flow. 

In order to study the effect of su~rimposed 
natural convection computations were carried 
out for values of ~G~*,O/~~~,O of lo, 102, and 103 
and a moderate heat flux, q+ = 5. Only the case 
where the flow was in the same direction as the 

I I I I 

u/urn 

2.0 

1-6 

0.8 
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FIG. 5b. Radial velocity profiles for pure forced convec- 
tion with uniform heat flux; qf -= 20. 

buoyancy forces, i.e. upward Aow, was con- 
sidered. This is the situation usually encountered 
in applications and, moreover, it is known 
[20,21] that when the buoyancy forces act 
against the Aow instability tends to develop at 
quite low values of the natural convection 
parameter and transition to turbulent flow 
occurs at Reynolds numbers far below the usual 
critical value. 

The wall parameters for ~G~*,o~~R~,o = 102 
and I@ are given in Table 2 and the local 
Nusselt numbers and friction factors are shown 
on Figs. 8 and 9 together with the soIution for 
Nc,.*,o/NR~,o = 1.7 One sees that superimposed 
natural convection, just as high heating rates, 
affects the friction factor more than it affects 
the Nusselt number. While for 

NGr*,O/NRe,O = lo3 

-_--.-- 
t For ,?&,O/NRe,O = 10 the Nusselt number deviated 

less than 0.2 per cent and fNtze,m less than 0.7 pef cent 
from the corresponding vaiues for ~G~*,oINR~,o = 1. 

the latter increases by at most 25 per cent, 
fNRe,% goes up by as much as 75 per cent. 

The solutions again indicate that for laminar 
flow of gases at high heating rates significant 
variation of properties is largely limited to the 
usual thermal entrance region. This is also 
evident from the development of the axial 
velocity profile, shown on Fig. 10. Even though 
the characteristic overshoot with a considerable 
depression of the centerline velocity occurs, the 
profile at x+ = 0.2 differs little from the usual 
parabolic profile. It is worth noting that the 
velocity profile with overshoot caused by 
buoyancy effects is accompanied by radial 
velocities quite different from those associated 
with the overshoot profile for high heating rates. 

Although solutions have been obtained for 
one particular value of the wall heat flux only, 

2.0 

1.8 

1.6 

1.4 

1.2 
r,-r 

L-T, 
1.0 

0% 

O*E 

0.S 

0.2 

0 
0.4 0.6 0.8 1.0 

r+ 
FIG. 6a. Temperature profiles for pure forced convection 
with uniform heat flux; q+ = 5; - - - - - fully developed 

nrofile for constant mouerties. 
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0.6 

0.4 

0.2 

X+ NNlV?L 

oxlO 11.98 
0.002 9.41 
0.005 6.90 
0.01 5.62 
0.02 4.69 
0.05 3.94 
0.1 3.71 
0.2 3.66 

q+ fNne,m T,ITm 

-4.68 9.23 0.508 
-3.58 9.31 0.514 
- 2.462 9.39 0.525 
- 1.853 9.62 0.540 
- 1.364 10.00 0.564 
-0.853 10.91 0.619 
-0.538 12.01 0.692 
- 0.268 13.40 0.800 

- 
FIG. 6b. Temperature profiles for pure forced convection 
with uniform heat flux; q+ = 20; - - - Deissler’s profile [l]. 

e,, = 2 
- 

we may from these solutions infer, tentatively, 
the limit beyond which buoyancy effects can no 
longer be neglected. Depending on the heating 
rate and on how large an error one is willing 
to accept the limiting value of NG~*,o/NR~,o may 

Table 2. Wall parameters for superimposed forced and 
natural convection with uniform heat J?UX (q+ = 5) 

NG~.,oINR~,o = 102; MO = 2 x 1O-2 

X+ NNU,?IA q+ fNm,m TwITm 

0.001 14.62 4.40 31.8 1.916 
0.002 11.31 3.37 30.8 1.872 
oxJ5 8.04 2.340 29.21 1.783 
0.01 6.30 1.769 27.43 1.686 
0.02 5+0 1.309 25.16 1.560 
0.05 3.92 0.828 21.57 1.356 
0.1 3.62 0.516 18.82 1.192 
0.2 364 0.203 16.83 1.062 

_____ 

e, = 5 

x+ NNU,VZ &l fNR8.m TwlTm x+ N~u,m qf fNRe,m T,ITm 

0.001 17.48 1.584 26.01 1.553 O+lOl 16.06 35.3 80.1 4.00 

0.002 13.90 1.740 28.56 1.673 0.002 12.04 27.31 69.3 3.65 

0.005 10.29 2.008 32.0 1.826 oxlO 8.13 19.37 55.4 3.07 

0.01 8.17 2.274 33.7 1.899 0.01 6.04 14.80 44.9 2.579 

0.02 6.45 2617 33.2 1.881 0.02 4.59 11.11 35.1 2.082 

0.05 4.81 3.25 28.18 1.660 0.05 3.61 7.09 24.32 1.502 

0.1 4.25 3.97 22.44 1.391 0.1 3.58 3.80 18.55 1.180 

0.2 4.28 5.36 18.44 1.174 0.15 3.64 1.735 16.88 1.068 

Table 2-continued 

Nc,.,o/N~e,o = 103; MO = 1O-3 

Xf NNU,na & fNRe,m TWIT,,, 

0.001 18.51 1.552 35.1 1.523 
0.002 14.98 1.689 41.3 1.626 
oxi 11.43 1.916 50.1 1.745 
0.01 9.35 2.138 54.8 1.787 
0.02 7.66 2.423 54.1 I ,744 
0.05 5.87 3.01 38.9 1.543 
0.1 4.69 3.86 25.15 1.356 
0.2 4.32 5.35 18.85 1.173 

z-__- 

Table 3. Wall parameters for pure forced convection with 
uniform wall temperature (Nor*,~/N~e,o = 1; MO = 10m2) 

e, = 0.5 

- 
H.M.-41 
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FIG. 7. Local friction factors and wall-to-bulk temperature ratios for pure forced 
convection with uniform heat flux. 
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FIG. 8. Local Nusselt numbers for superimposed forced and natural convection with 

uniform heat flux. 
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FIG. 9. Local friction factors and wail-to-bum tem~rature ratios for superimposed 
forced and natural convection with uniform heat flux. 

be chosen somewhere between 10 and 50. The 
latter value coincides with the limit for 
NGr,n/N&,m proposed by Brown [2l] for fully 
developed flow with constant properties. 

Three cases with uniform wall temperature 
were computed, two with heating of the gas 
(0, = 2 and 5) and one with cooling (0, = 0.5). 
Local wall parameters are given in Table 3; 
local values of the Nusselt number and the 
friction factor are plotted on Figs. 11 and 12, 
respectively. Both the Nusselt numbers and the 
friction factors are seen to follow the same 
pattern as was found for uniform heat flux. 
When the gas is cooled the effect of the pro- 
perty variation is reversed, as one would indeed 
expect. 

On Fig. 13 axial velocity profiles and tem- 
perature profiles, respectively, for heating of the 
gas are compared with those obtained with 
cooling. One sees clearly that, as already noted 
for uniform heat flux, the distortion of the 
velocity profiles are exactly opposite of what has 
hitherto been believed. The temperature pro- 
files, however, do show the expected effect of the 
property variation. 

Limits on app~~cabiiit~ of numerical solutions 
The numerical solutions are, as mentioned 

previously, considered only for xf >, 10-a. In 
an Appendix it is shown that the errors intro- 
duced by applying the boundary layer approxi- 
nations are small as long as the P&let number, 
based on the distance from the point where the 
heating starts, is above some 500. On Fig. 14 
these limitations are shown in terms of X+ and 
Npe,o. 

The significance of the limitations may be 
appreciated more readily when expressed in 
terms of the length-to-diameter ratio: 

Npe,o 200 1000 3000 

(x/&in 2.5 0.5 1.5 

Clearly, neither the application of the bound- 
ary-layer approximations nor the relatively large 
initial error gives rise to any serious limitation 
of the applicability of the numerical solutions. 

Empirical equations 
For design purposes it may sometimes be 

more convenient to have the solutions expressed 
as equations rather than in graphical or tabular 
form. The following empirical expressions 
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FIG. 1Oa. Axial velocity profiles for superimposed forced 
and natural convection with uniform heat flux; q+ = 5. 

represent the solutions for pure forced con- 
vection with a maximum error of -k3 per cent. 

Heat transfer 
Uniform heat flux, 0 < @- < 10: 

NN%,~ = 4.36 [l - exp (- 17 x+)] 

+ a~+-~‘~ exp (- ~xP’~) 

a = I.53 + O-11 q+O’” 

b = 20 + 5-O 49-t 

Uniform heat tIux, 10 < @ < 20: 

NNU,~ = 4.36 [l - exp (-- 17 x+)] 

-I- ax+-1’3 exp (- bx+) 

(35) 

(36) 

V+ 

2.5 

-2.5 

-5 0-J 0.A 0.6 0.8 1.0 
r* 

FIG. lob. Radial velocity profiles for superimposed forced 
and natural conkection with uniform heat flux; q+ = 5. 

a = 1.74 + 0.011 q+ 

b = 10 + 2.7 1/4+ 

Uniform wall temperature, O-5 < 6, < 2: 

NN%,~ = 366 [l - exp (- 13.5 x*)] 

+ a~+--~‘~ exp (- bxf) (37) 

a = 1-14 + 0*1558, 

b = 8.1 + 1.958, 

1 < T,/Tb < I-5: fNRe,m = 16(T,/Tb) (38) 

1.5 < T,/Tb < 3 : fN~e,m = 15.5 (Tw/T#‘lo 

(39) 

0.5 < TWIT0 < 1: fN~e,~ = 16 (Tw/Tb)Osal 

(40) 

Davenport and Leppert [3] found that their 
experimentally determined friction factors could 
be correlated by 

flvRe,m = 16 (T~/Tb)1’35 

for temperature ratios up to a little over two. 
In view of the considerable difficulties both in 
obtaining accurate measurements of the pressure 
drop and in the subsequent evaluation of the 
wall shear stress from these measurements, the 
agreement with the present results must be 
considered good. 
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FIG. 11. Local Nusselt numbers for pure forced convection with uniform wall temperature. 
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FIG. 13a. Axial velocity profiles for pure forced convec- 
tion with uniform wall temperature; ---..--0, = 2; -__* 

& = 0.5. 

Less satisfactory is the result of a comparison 
with the measurements of Dalle Donne and 
Bowditch [6,7] who found an exponent on the 
wah-to-bulk temperature ratio of 1.68. 

Part of the discrepancies between the experi- 
mental values and those found by the present 
analysis may be due to the error introduced by 
the one-dimensional treatment of the flow in 
the reduction of the experimental data. Since, 
near the point of maximum wall-to-bulk tem- 
perature ratio, the velocity profile is considerably 
more flat than the parabolic profile where the 
heating starts, the acceleration of the flow will 
be underestimated and, consequently, too large 
a friction factor will be found. 
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4-v-T 
T,-r, 
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3.4 
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I I I 1 

0 0.2 0.4 a+ 08 
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FIG. 13b. Temperature profiles for pure forced conv~tion 
with uniform wall temperature; --@,~=2;---_ 

66” = @5. 

2ooo 

2ooo 

4% 
loo0 

200 
10.' lo-' 1o.2 10" 1 

x+ 

FIG. 14. Limits for the applicability of finite-difference 
soiutions. 

CONCLUDING REMARKS 

Due to the nonlinearity of the governing 
equations and the strong coupling between them 
the solutions presented in this paper do not have 
the generality of the classical solutions for flow 
with constant fluid properties. Stifl, some con- 
clusions of general nature may be drawn from 
the present study. 

It has been demonstrated that laminar flow of 
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gases in ducts, under conditions where large 2. 

variations in the physical properties occur, can 
be described adequately by the boundary-layer 
equations. The basic restriction is of the same 3. 
nature as for external boundary layers, namely 
that the P&let number, based on axial distance, 
must be greater than a certain value, here found 
to be approximately 500. The significance of this 

4. 

result is that only due to the boundary layer 
approximations has it been possible to develop 5. 

a fairly simple finite-difference scheme, giving 
reasonably short computation times. 

At the rather small flow rates corresponding to 
6. 

laminar flow of gases, a high heating rate causes 
a rapid rise in the bulk temperature, and the 
wall-to-bulk temperature ratio will, therefore, 
approach unity relatively soon. Since it is this 

7. 

ratio, rather than the temperature difference, 
which determines the magnitude of the radial 
variation in the physical properties, significant 
temperature-dependent effects cannot persist 
beyond a certain distance from the start of the 

8. 

heating. The present solutions show that this 
distance largely coincides with the usual thermal- 9. 

entry length for flow with constant properties. 
It follows that the concept of developed laminar 
flow with strong radial temperature gradients- 10. 
the word “developed” referring to a situation 
where entrance effects are no longer present so 
that velocity and temperature profiles depend 

11. 

on local conditions only-is of quite limited 
practical significance with gases. 12. 
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APPENDIX 

The application of the boundary-layer approxi- 
mations for the present problem rests on purely 
heuristic arguments. The final justification must, 
therefore, be obtained by estimating the order 
of magnitude of the neglected terms from the 
numerical solutions. The two crucial assumptions 
are (i) that the molecular contributions to axial 
momentum and thermal energy transfer are 
negligible, and (ii) that the radial velocities are 
so small that all forces in the radial direction 
may be neglected. 

The significance of the molecular transfer of 
momentum and thermal energy may be estimated 
from the magnitude of the terms 

respectively, relative to the axial convection 
terms 

The 
radial 
inertia 

au aH 

p” ax and pu ax . 

magnitude of the forces acting in the 
direction is estimated from the radial 
term 

a6 a0 
PU G_ + PV & 

in comparison with the (axial) pressure gradient, 
representing the average magnitude of the forces 
in the axial direction. 

The results of such estimates at x+ = 1O-3 for 
qf = 2 and for q+ = 20 are summarized in 
Table A. 

Table A. Estimates of order of magnitude of neglected 
terms 

_.W_~. ________ .w 

q+ = 2 q+ = 20 

0.4 x 103 1w NP N-- 
NP& NPtd 

_._r 

aH I p”z QlkX 

3 x 103 
N-- 

NPtd 

dP 

I-I dx 

20 50 No -~ NP 
N&,0 NPP,O 

From the analogy to external boundary layers 
one would expect the applicability of the bound- 
ary-layer equations to be restricted by a minimum 
value of the Reynolds, or P&let, number, based 
on the axial distance from the point where the 
heating starts. The connection between the two 
P&let numbers, based on x and D, respectively, 
may be expressed as 

If we 
ponding 
1000. It 
qf = 20 

choose (Npe,z)min = 500, the corres- 
value of NP~,o at x+ = IO-3 becomes 
then follows from Table A that for 
the molecular contribution to axial 

momentum and thermal energy transfer are of 
the order of one to two per cent whereas for 
qf = 2 they are but a fraction hereof. The 
maximum value of the radial inertia term is for 
qf = 20 approximately five per cent of the 
typical force in the axial direction, decreasing 
to about two per cent for q+ = 2. 

x+ = 2 N~e,zlN;,,o 

In order to check the validity of using a fixed 
value of Npe+ as criterion for the applicability 
of the approximations, the radial inertia term 
was also evaluated at xf = O-008 for q+ = 20. 
This gave 

N 

15 

N~e,o 
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Corresponding to Npe,% = 500 we here find However, the magnitude of the radial forces 
NPQ = 350 and, hence, a relative magnitude relative to the forces in the axial direction is still 
of the radial forces of four to five per cent, nearly so small that we are justified in concluding that 
the same value as was found for x+ = 10-s. the boundary-layer approximations are indeed 

Just as for incompressible flow in a plane duct, valid for the present problem as long as the 
neglecting the radial momentum equation clearly P&let number, based on axial distance, is 
is the most questionable of the approximations. greater than some 500. 

Zusammenfasung-Fiir die Losung des Problems der laminaren Gasstromung in beheizten (oder 
gektihlten) Kreisrohren mit einer unbeheizten Einlaufstrecke bei grossen Anderungen der Stoff- 
werte des Gases wurde ein implizites, endliches Differenzenverfahren entwickelt. Die Losung basiert 
auf den Grenzschichtgleichungen, deren Giiltigkeit fur das vorliegende Problem mit den numerischen 
Losungen nachgeprtlft wurde. 

Zahlenbeispiele wurden ausgearbeitet fur Luft bei (i) reiner Zwangskonvektion mit verschiedenen 
Werten fiir konstante Beheizung; bei (ii) reiner Zwangskonvektion mit konstanter Wandtemperatur mit 
sowohl Aufheizen wie such Abkiihlen des Gases; und bei (iii) iiberlagerter Zwangs- und nattirlicher 
Konvektion mit konstanter Warmestromdichte. Fiir reine Zwangskonvektion werden Nlherung- 

sausdriicke fiir die lokale Nusseltzahl und den Reibungsbeiwert angegeben. 

AHnoTaUwsr--Fa3pa6OTaHa neHBKaH cxeMa KoHeYHbIx pa3KocTen UnH pemeHIIs 3aAaHH 
JIaMHHapHOrO TeZIeHHH Fa30B B KEtI’peTbIX (HJIM OXJIWK~eHHbIX) KOJIbUeBbIX TpJhX C HeHEW- 

PeBaeMbIM BXOAHbIM yYaCTKOM B YCJIOBMRX 6onbIImx I43MeHeHId IIapaMeTpOB I’333. hIIeHLlf2 

OCHOBaIIO Ha YpaBHeHHnX IIOI’paHWIHOrO CJIOR, CIIpZlBeAJIHBOCTb KOTOPbIX XJIFI i[aIlHO$i 33~3’IEi 

UpoBepeHa Ka HHcJIennbIx pemeHHBx. 
Pa3pa6OTaHbI WICJIeHHbE IIp&IMt?pbI AJIFI BO3AJ’Xa, BKJIIO’IBH CJIJ’Wll : (i) BbIHJW~eIIHOi? 

KOHBeKUllll lIpI pa3JIWIHbIX CKOPOCTFIX PaBHOMepHOrO HarpeBa ; (ii) BbIHJQK@HHOit KOH- 

BeKqMH npa PaBHOMepHO~ TeMnepaType CTCHKH B cnysae HarpeBaHHH II OxJIaHFAeHnbI ra3a ; 
El (iii) COBMeCTHOh BbIHy>KgeHHOfI II eCTCCTBCHHOI? KOHBt?KUAH Upn paBIIOMBpHOM nOTOKe 
Tenna. npHBeUeIIb1 npH6BMHteHHBIC BhlpWKE!HHFI AJIFI JIOKWIbHOI’O KPHTepHH HyCCenbTa II 

KO3IjNjjH~MeHTZl 1peHECFI B CJIy%W BbIIQ’ZK@HHO~ KOKBeKqPIH. 


